Neuregulin and dopamine modulation of hippocampal gamma oscillations is dependent on dopamine D4 receptors.
نویسندگان
چکیده
The neuregulin/ErbB signaling network is genetically associated with schizophrenia and modulates hippocampal γ oscillations--a type of neuronal network activity important for higher brain processes and altered in psychiatric disorders. Because neuregulin-1 (NRG-1) dramatically increases extracellular dopamine levels in the hippocampus, we investigated the relationship between NRG/ErbB and dopamine signaling in hippocampal γ oscillations. Using agonists for different D1- and D2-type dopamine receptors, we found that the D4 receptor (D4R) agonist PD168077, but not D1/D5 and D2/D3 agonists, increases γ oscillation power, and its effect is blocked by the highly specific D4R antagonist L-745,870. Using double in situ hybridization and immunofluorescence histochemistry, we show that hippocampal D4R mRNA and protein are more highly expressed in GAD67-positive GABAergic interneurons, many of which express the NRG-1 receptor ErbB4. Importantly, D4 and ErbB4 receptors are coexpressed in parvalbumin-positive basket cells that are critical for γ oscillations. Last, we report that D4R activation is essential for the effects of NRG-1 on network activity because L-745,870 and the atypical antipsychotic clozapine dramatically reduce the NRG-1-induced increase in γ oscillation power. This unique link between D4R and ErbB4 signaling on γ oscillation power, and their coexpression in parvalbumin-expressing interneurons, suggests a cellular mechanism that may be compromised in different psychiatric disorders affecting cognitive control. These findings are important given the association of a DRD4 polymorphism with alterations in attention, working memory, and γ oscillations, and suggest potential benefits of D4R modulators for targeting cognitive deficits.
منابع مشابه
Modulation of Hippocampal Gamma Oscillations by Dopamine and Serotonin Receptor Subtypes
Normal brain function is dependent on the efficient and effective communication between the multitudes of microcircuits that it encompasses. The brain employs neuronal-network oscillations for large-scale communication in the cortex. Fast oscillations in the gamma range (20-80 Hz) arise in the cortex and the hippocampus and are thought to be involved in important cognitive functions such as sen...
متن کاملDopamine D4 Receptor Activation Increases Hippocampal Gamma Oscillations by Enhancing Synchronization of Fast-Spiking Interneurons
BACKGROUND Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is releva...
متن کاملNeuregulin-1 regulates LTP at CA1 hippocampal synapses through activation of dopamine D4 receptors.
Neuregulin-1 (NRG-1) is genetically linked with schizophrenia, a neurodevelopmental cognitive disorder characterized by imbalances in glutamatergic and dopaminergic function. NRG-1 regulates numerous neurodevelopmental processes and, in the adult, suppresses or reverses long-term potentiation (LTP) at hippocampal glutamatergic synapses. Here we show that NRG-1 stimulates dopamine release in the...
متن کاملDopamine, cognitive function, and gamma oscillations: role of D4 receptors
Cognitive deficits in individuals with schizophrenia (SCZ) are considered core symptoms of this disorder, and can manifest at the prodromal stage. Antipsychotics ameliorate positive symptoms but only modestly improve cognitive symptoms. The lack of treatments that improve cognitive abilities currently represents a major obstacle in developing more effective therapeutic strategies for this debil...
متن کاملThe Involvement of Intra-Hippocampal Dopamine Receptors in the Conditioned Place Preference Induced By Orexin Administration into the Rat Ventral Tegmental Area
The activity of dopamine (DA)-containing neurons in the ventral tegmental area (VTA) is a key mechanism in mesolimbic reward processing that has modulatory effects on different diencephalic structures like hippocampus (HIP), and receives inhibitory feedback and excitatory feed forward control. In addition, within the hippocampus, DA receptors are mostly located in the dorsal part (CA1) and dopa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 32 شماره
صفحات -
تاریخ انتشار 2012